3.232 \(\int \frac{\sqrt{1+x^2+x^4}}{1+x^2} \, dx\)

Optimal. Leaf size=137 \[ \frac{\sqrt{x^4+x^2+1} x}{x^2+1}+\frac{1}{2} \tan ^{-1}\left (\frac{x}{\sqrt{x^4+x^2+1}}\right )+\frac{3 \left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{4 \sqrt{x^4+x^2+1}}-\frac{\left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{\sqrt{x^4+x^2+1}} \]

[Out]

(x*Sqrt[1 + x^2 + x^4])/(1 + x^2) + ArcTan[x/Sqrt[1 + x^2 + x^4]]/2 - ((1 + x^2)
*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/4])/Sqrt[1 + x^2 + x
^4] + (3*(1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/4]
)/(4*Sqrt[1 + x^2 + x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.180849, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.35 \[ \frac{\sqrt{x^4+x^2+1} x}{x^2+1}+\frac{1}{2} \tan ^{-1}\left (\frac{x}{\sqrt{x^4+x^2+1}}\right )+\frac{3 \left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} F\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{4 \sqrt{x^4+x^2+1}}-\frac{\left (x^2+1\right ) \sqrt{\frac{x^4+x^2+1}{\left (x^2+1\right )^2}} E\left (2 \tan ^{-1}(x)|\frac{1}{4}\right )}{\sqrt{x^4+x^2+1}} \]

Antiderivative was successfully verified.

[In]  Int[Sqrt[1 + x^2 + x^4]/(1 + x^2),x]

[Out]

(x*Sqrt[1 + x^2 + x^4])/(1 + x^2) + ArcTan[x/Sqrt[1 + x^2 + x^4]]/2 - ((1 + x^2)
*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticE[2*ArcTan[x], 1/4])/Sqrt[1 + x^2 + x
^4] + (3*(1 + x^2)*Sqrt[(1 + x^2 + x^4)/(1 + x^2)^2]*EllipticF[2*ArcTan[x], 1/4]
)/(4*Sqrt[1 + x^2 + x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 91.864, size = 320, normalized size = 2.34 \[ \frac{x \sqrt{x^{4} + x^{2} + 1}}{x^{2} + 1} - \frac{\sqrt{\frac{x^{4} + x^{2} + 1}{\left (x^{2} + 1\right )^{2}}} \left (x^{2} + 1\right ) E\left (2 \operatorname{atan}{\left (x \right )}\middle | \frac{1}{4}\right )}{\sqrt{x^{4} + x^{2} + 1}} + \frac{\sqrt{\frac{x^{4} + x^{2} + 1}{\left (x^{2} + 1\right )^{2}}} \left (x^{2} + 1\right ) F\left (2 \operatorname{atan}{\left (x \right )}\middle | \frac{1}{4}\right )}{2 \sqrt{x^{4} + x^{2} + 1}} + \frac{2 \sqrt{x^{4} + x^{2} + 1} F\left (\operatorname{atan}{\left (x \left (\frac{\sqrt{3}}{2} + \frac{i}{2}\right ) \right )}\middle | \frac{3}{2} + \frac{\sqrt{3} i}{2}\right )}{\sqrt{\frac{x^{2} \left (\frac{1}{2} - \frac{\sqrt{3} i}{2}\right ) + 1}{x^{2} \left (\frac{1}{2} + \frac{\sqrt{3} i}{2}\right ) + 1}} \left (\sqrt{3} - i\right ) \left (x^{2} \left (\frac{1}{2} + \frac{\sqrt{3} i}{2}\right ) + 1\right )} + \frac{\left (\frac{\sqrt{3}}{2} - \frac{i}{2}\right ) \sqrt{x^{4} + x^{2} + 1} \Pi \left (\frac{1}{2} - \frac{\sqrt{3} i}{2}; \operatorname{atan}{\left (x \left (\frac{\sqrt{3}}{2} - \frac{i}{2}\right ) \right )}\middle | \frac{3}{2} - \frac{\sqrt{3} i}{2}\right )}{\sqrt{\frac{x^{2} \left (\frac{1}{2} + \frac{\sqrt{3} i}{2}\right ) + 1}{x^{2} \left (\frac{1}{2} - \frac{\sqrt{3} i}{2}\right ) + 1}} \left (x^{2} \left (\frac{1}{2} - \frac{\sqrt{3} i}{2}\right ) + 1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((x**4+x**2+1)**(1/2)/(x**2+1),x)

[Out]

x*sqrt(x**4 + x**2 + 1)/(x**2 + 1) - sqrt((x**4 + x**2 + 1)/(x**2 + 1)**2)*(x**2
 + 1)*elliptic_e(2*atan(x), 1/4)/sqrt(x**4 + x**2 + 1) + sqrt((x**4 + x**2 + 1)/
(x**2 + 1)**2)*(x**2 + 1)*elliptic_f(2*atan(x), 1/4)/(2*sqrt(x**4 + x**2 + 1)) +
 2*sqrt(x**4 + x**2 + 1)*elliptic_f(atan(x*(sqrt(3)/2 + I/2)), 3/2 + sqrt(3)*I/2
)/(sqrt((x**2*(1/2 - sqrt(3)*I/2) + 1)/(x**2*(1/2 + sqrt(3)*I/2) + 1))*(sqrt(3)
- I)*(x**2*(1/2 + sqrt(3)*I/2) + 1)) + (sqrt(3)/2 - I/2)*sqrt(x**4 + x**2 + 1)*e
lliptic_pi(1/2 - sqrt(3)*I/2, atan(x*(sqrt(3)/2 - I/2)), 3/2 - sqrt(3)*I/2)/(sqr
t((x**2*(1/2 + sqrt(3)*I/2) + 1)/(x**2*(1/2 - sqrt(3)*I/2) + 1))*(x**2*(1/2 - sq
rt(3)*I/2) + 1))

_______________________________________________________________________________________

Mathematica [C]  time = 0.100507, size = 118, normalized size = 0.86 \[ -\frac{\sqrt [3]{-1} \sqrt{\sqrt [3]{-1} x^2+1} \sqrt{1-(-1)^{2/3} x^2} \left (F\left (i \sinh ^{-1}\left ((-1)^{5/6} x\right )|(-1)^{2/3}\right )-E\left (i \sinh ^{-1}\left ((-1)^{5/6} x\right )|(-1)^{2/3}\right )+\sqrt [3]{-1} \Pi \left (\sqrt [3]{-1};-i \sinh ^{-1}\left ((-1)^{5/6} x\right )|(-1)^{2/3}\right )\right )}{\sqrt{x^4+x^2+1}} \]

Antiderivative was successfully verified.

[In]  Integrate[Sqrt[1 + x^2 + x^4]/(1 + x^2),x]

[Out]

-(((-1)^(1/3)*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - (-1)^(2/3)*x^2]*(-EllipticE[I*Ar
cSinh[(-1)^(5/6)*x], (-1)^(2/3)] + EllipticF[I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)
] + (-1)^(1/3)*EllipticPi[(-1)^(1/3), (-I)*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)]))/
Sqrt[1 + x^2 + x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.091, size = 293, normalized size = 2.1 \[ -4\,{\frac{\sqrt{1+1/2\,{x}^{2}-i/2{x}^{2}\sqrt{3}}\sqrt{1+1/2\,{x}^{2}+i/2{x}^{2}\sqrt{3}}{\it EllipticF} \left ( 1/2\,x\sqrt{-2+2\,i\sqrt{3}},1/2\,\sqrt{-2+2\,i\sqrt{3}} \right ) }{\sqrt{-2+2\,i\sqrt{3}}\sqrt{{x}^{4}+{x}^{2}+1} \left ( i\sqrt{3}+1 \right ) }}+4\,{\frac{\sqrt{1+1/2\,{x}^{2}-i/2{x}^{2}\sqrt{3}}\sqrt{1+1/2\,{x}^{2}+i/2{x}^{2}\sqrt{3}}{\it EllipticE} \left ( 1/2\,x\sqrt{-2+2\,i\sqrt{3}},1/2\,\sqrt{-2+2\,i\sqrt{3}} \right ) }{\sqrt{-2+2\,i\sqrt{3}}\sqrt{{x}^{4}+{x}^{2}+1} \left ( i\sqrt{3}+1 \right ) }}+{\frac{1}{\sqrt{-{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3}}}\sqrt{1+{\frac{{x}^{2}}{2}}-{\frac{i}{2}}{x}^{2}\sqrt{3}}\sqrt{1+{\frac{{x}^{2}}{2}}+{\frac{i}{2}}{x}^{2}\sqrt{3}}{\it EllipticPi} \left ( \sqrt{-{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3}}x,- \left ( -{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) ^{-1},{\frac{\sqrt{-{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3}}}{\sqrt{-{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{{x}^{4}+{x}^{2}+1}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((x^4+x^2+1)^(1/2)/(x^2+1),x)

[Out]

-4/(-2+2*I*3^(1/2))^(1/2)*(1+1/2*x^2-1/2*I*x^2*3^(1/2))^(1/2)*(1+1/2*x^2+1/2*I*x
^2*3^(1/2))^(1/2)/(x^4+x^2+1)^(1/2)/(I*3^(1/2)+1)*EllipticF(1/2*x*(-2+2*I*3^(1/2
))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))+4/(-2+2*I*3^(1/2))^(1/2)*(1+1/2*x^2-1/2*I*x
^2*3^(1/2))^(1/2)*(1+1/2*x^2+1/2*I*x^2*3^(1/2))^(1/2)/(x^4+x^2+1)^(1/2)/(I*3^(1/
2)+1)*EllipticE(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))+1/(-1/2
+1/2*I*3^(1/2))^(1/2)*(1+1/2*x^2-1/2*I*x^2*3^(1/2))^(1/2)*(1+1/2*x^2+1/2*I*x^2*3
^(1/2))^(1/2)/(x^4+x^2+1)^(1/2)*EllipticPi((-1/2+1/2*I*3^(1/2))^(1/2)*x,-1/(-1/2
+1/2*I*3^(1/2)),(-1/2-1/2*I*3^(1/2))^(1/2)/(-1/2+1/2*I*3^(1/2))^(1/2))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{x^{4} + x^{2} + 1}}{x^{2} + 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(x^4 + x^2 + 1)/(x^2 + 1),x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + x^2 + 1)/(x^2 + 1), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{\sqrt{x^{4} + x^{2} + 1}}{x^{2} + 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(x^4 + x^2 + 1)/(x^2 + 1),x, algorithm="fricas")

[Out]

integral(sqrt(x^4 + x^2 + 1)/(x^2 + 1), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{\left (x^{2} - x + 1\right ) \left (x^{2} + x + 1\right )}}{x^{2} + 1}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((x**4+x**2+1)**(1/2)/(x**2+1),x)

[Out]

Integral(sqrt((x**2 - x + 1)*(x**2 + x + 1))/(x**2 + 1), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{\sqrt{x^{4} + x^{2} + 1}}{x^{2} + 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(x^4 + x^2 + 1)/(x^2 + 1),x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + x^2 + 1)/(x^2 + 1), x)